

Description

The P14C10 is an Over-Voltage-Protection (OVP) load switch with fixed 5.8V OVLO threshold voltage. The device will switch off internal MOSFET to disconnect IN to OUT to protect load when any of input voltage over the threshold. The Over temperature protection (OTP) function monitors chip temperature to protect the device. The P14C10 is available in Green SOT23 package.

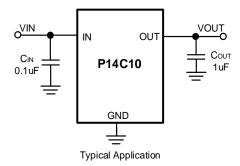


Figure 1: Application Circuit

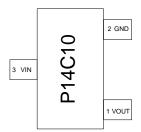


Figure 2: Pin order and Marking (Top view)

Feature

- Maximum input voltage : 30V
- Ultra fast OVP response time: 50ns (Typ.)
- Fixed OVLO threshold voltage: 5.8V, ±3%
- Fixed OCP threshold current: 1.1A, ±10%
- > 340mΩ on resistance
- > Thermal Shutdown
- Available in Green SOT23 Package

Application

- > TWS
- Portable Media Players
- Low-Power Handheld Devices

Rev.1.0 1 www.prisemi.com

Pin Definitions

Pin No.	Symbol	Descriptions
1	OUT	Switch output Terminal.
2	GND	Ground Terminal.
3	IN	Switch Input and Device Power Supply.

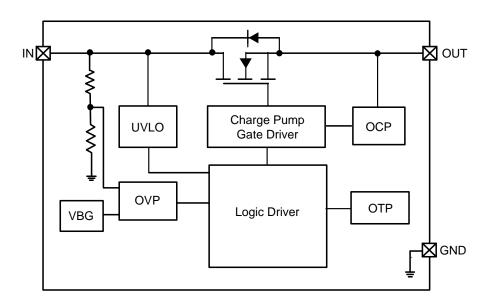


Figure 3: IC Block Diagram

Ordering Information

ORDER NUMBER	MARKING	PACKAGE	Q'TY/BY REEL
P14C10	P14C10	SOT23	3000 / Tape & Reel

Rev.1.0 2 www.prisemi.com

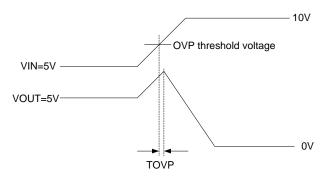
Absolute maximum rating

Parameter(Note1)	Symbol	Value	Units
Input voltage (IN pin)	V _{IN}	-0.3 ~ 30	V
Output voltage (OUT pin)	V _{OUT}	-0.3 ~ 6.5	V
Junction temperature	TJ	150	°C
Lead temperature(10s)	TL	260	°C
Storage temperature	Tstg	-55~150	°C
Thermal Resistance	θја	270	°C/W
ECD Datings	НВМ	±2000	V
ESD Ratings	CDM	±500	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Value	Units
Input voltage	V _{IN}	3~30	V
MAX Continuous Output current	Іоит	1.0	А
Ambient operating temperature	Topr	-40~85	$^{\circ}$


Rev.1.0 3 www.prisemi.com

Electrical Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
General Function						
Input voltage range	V _{IN}		3		30	V
Quiescent current	lα	NO Load, V _{IN} =5V		60		uA
Over voltage quiescent current	I _{Q_OVP}	NO Load, V _{IN} =30V		120		uA
On resistance	R _{on}	V _{IN} =5V, I _{OUT} =1.0A		340		mΩ
Turn On Time	t _{ON}	VOUT=VIN*10% to VOUT=VIN*90%		400		us
OVP Function						
OVP response time	t _{OVP}	V _{IN} rising, C _{IN} =C _L =0pF (Note2)		50		ns
OVP voltage	V _{ovlo}	VIN rising	5.6	5.8	6.0	V
Output discharge resistance	Rdchg	Vin=5V		1.5		kΩ
OCP Function	I				Į.	
OCP current	Іоср	Current Rising		1.1		Α
OCP accuracy	Accuracy_locp	IOCP=1.1A		±10		%
OCP deglitch time	TDEGLITCH_OCP			0.3		ms
OTP Function						
OTP threshold temperature	T _{OTP}	VIN=5V		140		$^{\circ}$
OTP hysteresis temperature	T _{HYS}	VIN=5V		20		$^{\circ}$
Hot-plug ability						
Hot-plug ability		C _{IN} =0.1uF, C _{OUT} =1uF			30	V

Note 2:Guaranteed by design

OVP response time test

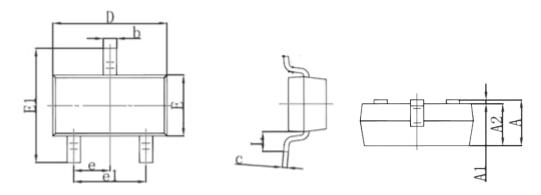
Function Descriptions

1. Over Current Protection (OCP)

If the output current exceed the loop threshold, the device limits the current for a blanking duration of TDEGLITCH_OCP. If the over current situation exceeds the TDEGLITCH_OCP, the switch will turned off, and the Fault pin is go low.

2. Over-voltage Lockout (OVLO)

The P14C10 Input has an over voltage protection to protect system. When the VIN voltage rises above VovLo threshold, the system will turns the switch off.


3. Over Temperature Protection (OTP)

The P14C10 monitors its own internal temperature to prevent thermal failures. The chip turns off the power MOSFET when the internal temperature reaches 140°C, and will resume after the internal temperature is cooled down below 20°C.

Rev.1.0 5 www.prisemi.com

Product dimension (SOT23)

Dim	Millimeters			
Dilli	Min.	Тур.	Max.	
Α	0.90	1.00	1.15	
A1	0.00	0.05	0.10	
A2	0.89	1.00	1.11	
b	0.30	0.40	0.50	
С	0.08	0.13	0.18	
D	2.80	2.90	3.00	
E	1.20	1.30	1.40	
E1	2.10	2.30	2.55	
е	0.95 Typ.			
e1	1.78	1.90	2.04	
L	0.550 Ref.			

Rev.1.0 6 www.prisemi.com

IMPORTANT NOTICE

and Prisemi® are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Prisemi reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and datasheets before placing orders and should verify that such information is current and complete.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

Prisemi s a registered trademark of Prisemi Electronics.

All rights are reserved.