

PI40S120T3HA7

Insulate-Gate Bipolar Transistor

Description

Circuit Diagram

Applications

Industrial UPS

Welding machine

Solar converters

Energy Storage

> EV Charger

Marking (Top View)

Feature

- Low switching power loss
- Low switching surge and noise
- Advanced Field Stop technology
- Low EMI
- Maximum junction temperature 175°C
- Qualified according to JEDEC for target applications
- Pb-free lead plating, halogen-free mold compound, RoHS compliant
- Internal insulation

Absolute maximum rating@25°C

Symbol Value Units **Parameter** V Collector-Emitter Voltage 1200 V_{CES} Gate-Emitter Voltage ± 20 V V_{GES} Transient Gate-emitter Voltage (t_p≤10µs, D<0.010) ± 30 T_c= 25℃ 80 **Collector Current** А $I_{\rm C}$ T_c= 100°C 40 **Pulsed Collector Current** 160 А I_{CM} T_c= 25℃ 40 **Diode Current** А I_{F} T_c= 100°C 20 **Diode Pulsed Current** 80 А I_{FM} **Power Dissipation** 312 W P_{D} °C **Operating Junction Temperature** T_{J} -55~+150 °C Storage Temperature T_{STG} -55~+150

Electrical characteristics per line@25°C (unless otherwise specified)

Parameter	Symbol	Conditio	Min.	Тур.	Max.	Units	
Collector-Emitter Breakdown Voltage	BV _{CE}	V _{GE} =0V, I _C =1mA		1200	-	-	V
C-E Leakage Current	I _{CES}	V _{CE} =1200V, V _{GE} =0V		-	-	500	μA
G-E Leakage Current	I _{GES}	V_{GE} = \pm 20V, V_{CE} =0V		-	-	±400	nA
Gate-Emitter Threshold Voltage	V _{GE(th)}	Ι _C =250μΑ, V _{CE} =V _{GE}		4.8	6.4	8	V
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C =40A, V _{GF} =15V	T _C =25℃	-	2.2	2.7	V
Input Capacitance	C.		_	4404	_	pF	
Output Capacitance	C	Vor=30V.Vor=0	-	140	-		
Reverse Transfer Capacitance	Croc				30		
	V _{FM}		T _c =25℃	-	2.4	3.1	
Diode Forward Voltage		I _F =20A		-	1.9	-	V
Turn-on Delay Time	t _{d(on)}		-	44	-	mJ	
Rise Time	t _r	V _{CE} =600 V _{GE} =15	-	118	-		
Turn-off Delay Time	t _{d(off)}	R _G =10! I _C =40A	-	102	-		
Fall Time	t _f		-	84	-		
Turn-on Energy Loss	E _{on}		-	3.9	-		
Turn-off Energy Loss	E _{off}	V _{CE} =600V, V _{GE} =15V, R _G =10Ω, I _C =40A		-	0.6		-
Total Switching Loss	E _{st}			-	4.5		-
Total Gate Charge	Q _g			-	134	-	
Gate to Emitter Charge	Q _{ge}	V _{CE} =600V, V ₀	-	44	-	nC	
Gate to Collector Charge	Q _{gc}	1 _C -40A		-	46		-
Diode Reverse Recovery Time	t _{rr}			-	62	-	ns
Diode Reverse Recovery Charge	Q _{rr}	VDD=200V T	-	90	-	nC	
Diode Reverse Recovery Current	I _{rm}	I _{ES} =20A, dI _{ES} /dt=100A/μs		-	2.8	-	Α
Diode Reverse Recovery Current Tb Slope	Di _{rr} /Dt		-	104	-	A/µs	
Rev.06.1		2				www.p	risemi.com

PI40S120T3HA7

PI40S120T3HA7

Thermal Resistance

Parameter	Symbol	Min.	Тур.	Max.	Unit
Thermal Resistance, IGBT Junction-Ambient	R _{th(J-A)}	-	-	40	°C/W
Thermal Resistance, IGBT Junction to Case	R _{th(J-C)}	-	-	0.4	°C/W
Thermal Resistance, FRD Junction to Case	$R_{th(J-C)}$	-	-	1.2	°C/W

Typical Characteristics

Insulate-Gate Bipolar Transistor

PI40S120T3HA7

Typical Characteristics

Insulate-Gate Bipolar Transistor

PI40S120T3HA7

PI40S120T3HA7

Insulate-Gate Bipolar Transistor

Insulate-Gate Bipolar Transistor

Product Dimension (TO-247-3L)

Dim	Millimeters			Dim	Millimeters			
	Min	Nom	Max		Min	Nom	Max	
A	4.80	5.00	5.20	e	5.44 BSC			
A1	2.21	2.41	2.59	L	19.72	19.92	20.22	
A2	1.85	2.00	2.15	L1	-	-	4.30	
b	1.11	-	1.36	Q	5.60	5.80	6.00	
b2	1.91	-	2.25	Р	3.40	-	3.80	
b4	2.91	-	3.25					
С	0.51	-	0.75					
D	20.80	21.00	21.30					
E	15.50	15.80	16.10					
E2	4.40	5.00	5.20					

PI40S120T3HA7

IMPORTANT NOTICE

P and **Prisemi** are registered trademarks of **Prisemi Electronics Co., Ltd (**Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

> Website: http://www.prisemi.com For additional information, please contact your local Sales Representative. ©Copyright 2009, Prisemi Electronics Prisemi[®] is a registered trademark of Prisemi Electronics. All rights are reserved.